Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biomol Struct Dyn ; : 1-12, 2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2037155

ABSTRACT

The BA.1 × AY.4 recombinant variant (Deltacron) continues to inflict chaos globally due to its rapid transmission and infectivity. To decipher the mechanism of pathogenesis by the BA.1 × AY.4 recombinant variant (Deltacron), a protein coupling, protein structural graphs (PSG), residue communication and all atoms simulation protocols were used. We observed that the bonding network is altered by this variant; engaging new residues that helps to robustly bind. HADDOCK docking score for the wild type has been previously reported to be -111.8 ± 1.5 kcal/mol while the docking score for the Deltacron variant was calculated to be -128.3 ± 2.5 kcal/mol. The protein structural graphs revealed variations in the hub residues, number of nodes, inter and intra residues communities, and path communication perturbation caused by the acquired mutations in the Deltacron-RBD thus alter the binding approach and infectivity. Moreover, the dynamic behaviour reported a highly flexible structure with enhanced residues flexibility particularly by the loops required for interaction with ACE2. It was observed that these mutations have altered the secondary structure of the RBD mostly transited to the loops thus acquired higher flexible dynamics than the native structure during the simulation. The total binding free energy for each of these complexes, that is, WT-RBD and Deltacron-RBD were reported to be -61.38 kcal/mol and -70.47 kcal/mol. Protein's motion revealed a high trace value in the Deltacron variant that clearly depict more structural flexibility. The broad range of phase space covered by the Deltacron variant along PC1 and PC2 suggests that these mutations are important in contributing conformational heterogeneity or flexibility that consequently help the variant to bind more efficiently than the wild type. The current study provides a basis for structure-based drug designing against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 39(13): 4659-4670, 2021 08.
Article in English | MEDLINE | ID: covidwho-1521979

ABSTRACT

The current coronavirus (SARS-COV-2) pandemic and phenomenal spread to every nook and cranny of the world has raised major apprehensions about the modern public health care system. So far as a result of this epidemic, 4,434,653 confirmed cases and 302,169 deaths are reported. The growing infection rate and death toll demand the use of all possible approaches to design novel drugs and vaccines to curb this disease. In this study, we combined drugs repurposing and virtual drug screening strategies to target 3CLpro, which has an essential role in viral maturation and replication. A total of 31 FDA approved anti-HIV drugs, and Traditional Chinese medicines (TCM) database were screened to find potential inhibitors. As a result, Saquinavir, and five drugs (TCM5280805, TCM5280445, TCM5280343, TCM5280863, and TCM5458190) from the TCM database were found as promising hits. Furthermore, results from molecular dynamics simulation and total binding free energy revealed that Saquinavir and TCM5280805 target the catalytic dyad (His41 and Cys145) and possess stable dynamics behavior. Thus, we suggest that these compounds should be tested experimentally against the SARS-COV-2 as Saquinavir has been reported to inhibit HIV protease experimentally. Considering the intensity of coronavirus dissemination, the present research is in line with the idea of discovering the latest inhibitors against the coronavirus essential pathways to accelerate the drug development cycle.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2
3.
Biomed Pharmacother ; 143: 112176, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1412768

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variants reported in different countries have posed a serious threat to human health and social fabrics worldwide. In addition, these new variants hindered the efforts of vaccines and other therapeutic developments. In this review article, we explained the emergence of new variants of SARS-CoV-2, their transmission risk, mortality rate, and, more importantly, the impact of each new variant on the efficacy of the developed vaccines reported in different literature and findings. The literature reported that with the emergence of new variants, the efficacy of different vaccines is declined, hospitalization and the risk of reinfection is increased. The reports concluded that the emergence of a variant that entirely evades the immune response triggered by the vaccine is improbable. The emergence of new variants and reports of re-infections are creating a more distressing situation and therefore demands further investigation to formulate an effective therapeutic strategy.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/classification , COVID-19 Vaccines/pharmacology , Humans , Immunogenicity, Vaccine , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Treatment Outcome
5.
Interdiscip Sci ; 13(1): 147-152, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1042666

ABSTRACT

Hantaviruses, albeit reported more than 40 years ago, are now considered emerging viruses' because of their growing importance as human pathogens. Hantavirus created focal news when the paradoxical spread was reported during the world's pandemic battle of the COVID-19, killing a man in Yunnan province of China, further jeopardizing the existing of the human race on the planet earth. In recent years an increasing number of infections and human-to-human transmission is creating a distressing situation. In this short communication, we have focused on the biology, pathogenesis, immunology, epidemiology and future perspective of the Hantaviruses. Our understandings of hantavirus related pandemics and syndrome are limited, the contributing environmental factors, the cellular and viral dynamics in transmission from natural reservoirs to humans and finally, the virology in humans is quite intricate. Priorities for future research suggest that setting up scientific collaboration, the funding, and encouragement of health ministries and the research institutes should take admirable steps to build an understanding of this virus. Discovering new drugs or other therapeutic molecules such as vaccines takes a longer time. Thus with the recent artificial intelligence (AI) technology, the rifle for impending new medicines should be hastened. Last but not least, a data-sharing platform should be provided where all the researchers should share and make available all the necessary information such as genomics, proteomics, host-factors, and other epigenetics information, which will encourage the research collaboration in the preparation against the Hantaviruses.


Subject(s)
Hantavirus Infections/epidemiology , Orthohantavirus/physiology , Pandemics , Geography , Orthohantavirus/immunology , Health Policy , Humans , Incidence , Virus Attachment
6.
J Biomol Struct Dyn ; 40(1): 523-537, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-748265

ABSTRACT

The outbreak of the recent coronavirus (SARS-CoV-2), which causes a severe pneumonia infection, first identified in Wuhan, China, imposes significant risks to public health. Around the world, researchers are continuously trying to identify small molecule inhibitors or vaccine candidates by targeting different drug targets. The SARs-CoV-2 macrodomain-I, which helps in viral replication and hijacking the host immune system, is also a potential drug target. Hence, this study targeted viral macrodomain-I by using drug similarity, virtual screening, docking and re-docking approaches. A total of 64,043 compounds were screened, and potential hits were identified based on the docking score and interactions with the key residues. The top six hits were subjected to molecular dynamics simulation and Free energy calculations and repeated three times each. The per-residue energy decomposition analysis reported that these compounds significantly interact with Asp22, Ala38, Asn40, Val44, Phe144, Gly46, Gly47, Leu127, Ser128, Gly130, Ile131, Phe132 and Ala155 which are the critical active site residues. Here, we also used ADPr as a positive control to compare our results. Our results suggest that our identified hits by using such a complicated computational pipeline could inhibit the SARs-CoV-2 by targeting the macrodomain-1. We strongly recommend the experimental testing of these compounds, which could rescue the host immune system and could help to contain the disease caused by SARs-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Immune System , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2
7.
Comput Struct Biotechnol J ; 18: 2174-2184, 2020.
Article in English | MEDLINE | ID: covidwho-710430

ABSTRACT

The emergence of recent SARS-CoV-2 has become a global health issue. This single-stranded positive-sense RNA virus is continuously spreading with increasing morbidities and mortalities. The proteome of this virus contains four structural and sixteen nonstructural proteins that ensure the replication of the virus in the host cell. However, the role of phosphoprotein (N) in RNA recognition, replicating, transcribing the viral genome, and modulating the host immune response is indispensable. Recently, the NMR structure of the N-terminal domain of the Nucleocapsid Phosphoprotein has been reported, but its precise structural mechanism of how the ssRNA interacts with it is not reported yet. Therefore, here, we have used an integrated computational pipeline to identify the key residues, which play an essential role in RNA recognition. We generated multiple variants by using an alanine scanning strategy and performed an extensive simulation for each system to signify the role of each interfacial residue. Our analyses suggest that residues T57A, H59A, S105A, R107A, F171A, and Y172A significantly affected the dynamics and binding of RNA. Furthermore, per-residue energy decomposition analysis suggests that residues T57, H59, S105 and R107 are the key hotspots for drug discovery. Thus, these residues may be useful as potential pharmacophores in drug designing.

8.
Interdiscip Sci ; 12(3): 335-348, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-649384

ABSTRACT

Most recently, an outbreak of severe pneumonia caused by the infection of SARS-CoV-2, a novel coronavirus first identified in Wuhan, China, imposes serious threats to public health. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Therefore, the role and inhibition of nsp12 are indispensable. A cryo-EM structure of RdRp from SARs-CoV-2 was used to identify novel drugs from Northern South African medicinal compounds database (NANPDB) by using computational virtual screening and molecular docking approaches. Considering Remdesivir as the control, 42 compounds were shortlisted to have docking score better than Remdesivir. The top 5 hits were validated by using molecular dynamics simulation approach and free energy calculations possess strong inhibitory properties than the Remdesivir. Thus, this study paved a way for designing novel drugs by decoding the architecture of an important enzyme and its inhibition with compounds from natural resources. This disclosing of necessary knowledge regarding the screening and the identification of top hits could help to design effective therapeutic candidates against the coronaviruses and design robust preventive measurements.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Biological Products/pharmacology , Coronavirus Infections/virology , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/chemistry , Betacoronavirus/genetics , Biological Products/chemistry , COVID-19 , Catalytic Domain/genetics , Computer Simulation , Coronavirus Infections/epidemiology , Coronavirus RNA-Dependent RNA Polymerase , Databases, Pharmaceutical , Drug Evaluation, Preclinical , Genome, Viral , Host Microbial Interactions/drug effects , Humans , Ligands , Molecular Docking Simulation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL